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General Techniques for Evaluating Twistor
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Explicit differential and integral relations that afford a natural basis for
systematically evaluating twistor diagrams are presented. The evaluation
techniques include making use of a conformally invariant parametrization
prescription along with a set of graphical computational devices which clearly
bring out the striking features of the integrals associated with such diagrams. It
appears that the main results of the relevant calculations carried out earlier can
all be extracted from structures which arise out of effectively implementing
the techniques. Both the topological character and the location of the contours
presumably borne by any diagrams turn out to be specified in a unique way.
Another explanation of the breaking of the conformal symmetry that arises in
the context of twistor theory is automatically provided.

1. INTRODUCTION

Twistor diagrams were introduced about 26 years ago as an attempt to

provide an alternative approach to pertubative quantum field theory which

might produce finite amplitudes for high-energy scattering processes (Penrose

and MacCallum, 1972). Presumably, this conformally invariant framework

could initially afford a set of scaling-invariant multidimensional contour
integrals which would take over the role of the conventional Feynman graphs

for massless quantum electrodynamics in the x-representation. Explicit dia-

grams for the Compton and MoÈ ller processes along with other physically

meaningful configurations were thus proposed. Nevertheless, the pertinent

constructions had no basis that might reflect the utilization of methodical

procedures except for the incorporation of the helicity-linear-momentum con-
servation laws and the implementation of some provisional rules associated
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with a contour prescription. The actual evaluation of twistor diagrams was

carried out for the first time by Qadir (1971), who showed in a notable way

that the standard result for the cross section of the f 4-scattering could be
effectively recovered. This computational work was based upon a noninvari-

ant parametrization prescription which did not lead to a specification of the

location of the contours, with the imposition of certain constraints on the

variables which partake of the integrations, and a particular choice of SU(2, 2)

bases having been put into effect at the intermediate stages of the calculations.

Penrose likewise pointed out that processes involving the creation and annihi-
lation of electron±positron pairs could be calculated in a contour-free fashion

by defining simple (PoincareÂ-invariant) twistor differential operators and

expressing the relevant states in the p-representation. Additionally, a transcrip-

tion method was given (Penrose, 1975) whereby covariant kinematical quanti-

ties carrying massless fields may be expressed in terms of diagrams, but no

specific rules for translating the underlying spacetime configurations were
deduced. The situation concerning the location and topological definition of

the contours was investigated on the basis of the application of an apparently

rigorous mathematical treatment of the diagrams (Sparling, 1975). In this

connection, it was stated later that the original diagram for the MoÈ ller process

bears an infrared divergence which can be regularized by ascribing compact
bounded contours to the corresponding integral and utilizing a nonprojective

shifting technique (Hodges and Huggett, 1980; Hodges, 1983a±c). An interest-

ing result obtained more recently has suggested that cohomological contours

for the so-called elementary-state branches must necessarily carry S 1-pieces

(Huggett, 1993).

In the present work, we provide a basis for systematically evaluating
twistor diagrams in the x-representation. Our methods involve making use

of a system of differential and integral relations which particularly give rise

to a useful pole-order lowering technique. It will be shown that such relations

enable one to perform several integrations at a time, thereby reducing any

conformally invariant diagrams to integrals of wedge products between Poin-

careÂ-invariant one-forms. It will become clear that the breaking of the confor-
mal symmetry is due essentially to an intrinsic differential property of the

integrands of the integrals which represent the diagrams. In each case, the

completion of the evaluation is accomplished by introducing a new parametri-

zation prescription which immediately yields elementary expressions pos-

sessing a spacetime meaning. It appears that the conformal invariance can

be recovered by following up suitable integration procedures and allowing
for appropriate identifications involving auxiliary twistors. Accordingly, we

will see that the contours must be thought of as the topological product of

S 1’ s which are always unambiguously located in products of complex planes.

We also construct a set of graphical devices that help keep track of the index
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blocks which occur in the calculation of any of the diagrams considered

hitherto. In order to illustrate the principal characteristics of the methods, it

will be enough to evaluate explicitly only some of the (projective) configura-

tions taken up by Qadir (1978). It will turn out, in effect, that all the final

results of the calculations carried out earlier can apparently be extracted from

structures which arise out of implementing the techniques.

The organization of the paper is as follows. In Section 2, we exhibit

our system of relations, the description of the key integration processes being

given thereafter. We build up the graphs in Section 3. For completeness, the

explanation of the basic rules underlying the construction will be included.

Section 4 deals with the illustration of the methods. There, we will make

further observations on the integrations and a few particular points regarding

the appropriateness of the identifications without touching upon the physical

aspects of the diagrams. Some remarks on our work will be made in Section

5. No attempt to provide any cohomological interpretation of our statements

will be made herein. The usual twistor-diagram conventions and rules will

from now on be taken for granted. All the elementary twistors entering the

diagrams are at the outset assumed to be null and defined in real Minkowski

space RM. The p -parts that occur in each infinity-twistor inner product will

not be subject to any proportional ity relations. The set of complex numbers

will be denoted by C. For the ordinary differential forms on the projective

twistor spaces, we have the notation

d A 5 I m n A m dA n

d X 5 I m n X m dX n

and

D A 5
1

3!
e m n l s A m dA n Ù dA l Ù dA s

D X 5
1

3!
e m n l s X m dX n Ù dX l Ù dX s

The nonprojective forms are written as

d 2A 5
1

2
I m n dA m Ù dA n

d 2X 5
1

2
I m n dX m Ù dX n
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and

d 4A 5
1

4!
e m n l s dA m Ù dA n Ù dA l Ù dA s

d 4X 5
1

4!
e m n l s dX m Ù dX n Ù dX l Ù dX s

Wedge products between projective forms of the same degree will be

denoted as

d AX ? ? ? 5 d A Ù d X Ù ? ? ?

and

D AX ? ? ? 5 D A Ù D X Ù ? ? ?

In general, pieces of statements carrying twistors of one type have counterparts
carrying twistors of the other type. Either element of a pair of such dual

structures can at once be derived from the other by replacing kernel letters and

invoking the canonical twistor pseudo-Hermitian conjugation rule (Penrose,

1967; Penrose and Rindler, 1986)

Upper index Lower index

0 % 2

1 % 3

2 % 0

3 % 1

For this reason, we will not spell out the entire system of relations when

developing Sections 2 and 3.

2. DIFFERENTIAL AND INTEGRAL RELATIONS

To start with, let us write down the simple relations

d 2X 5
d z
z

Ù d X 5
1

2
d d X (2.1)

and

d 4X 5
d h
h

Ù D X 5
1

4
d D X (2.2)

with z standing for either of the components (X0, X1) and h being any of the

components {X m }. Loosely speaking, the structures (2.1) and (2.2) enable us
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to pass from nonprojective integrals to projective ones by performing trivial

integrations. We also have the device

(A m dX m ) Ù D X 5 (A m X m )d 4X (2.3)

A short calculation yields the PoincareÂ-invariant relation

(A l dX l ) Ù (B s dX s ) Ù d 2X 5 (I l s A l B s )d 4X (2.4)

the corresponding projective statement being written out explicitly as

(A l dX l ) Ù (B s dX s ) Ù d X

5 (I l s A l B s ) D X 1 [(B s X s )(A l dX l ) 2 (A l X l )(B s dX s )] Ù
d z
z

Ù d X (2.5)

We will see in a moment that the second term on the right-hand side of (2.5)

vanishes identically.
In fact, there is a two-form analogue of (2.3) which can be derived in

a transparent manner by parametrizing

X m 5 a E m 1 b F m (2.6)

where a and b both belong to C 2 {0}, and (E m , F m ) is a pair of fixed (null)

twistors. We thus have

d 2X 5 (I r s E r F s )d a Ù d b (2.7a)

along with

(C m dX m ) Ù d X 5 (C m X m )d 2X (2.7b)

such that

d X 5 (I r s E r F s ) a 2d j (2.7c)

with j 5 b / a . It should be emphatically observed that (2.7) can be incorporated

into the left-hand side of (2.5) only through either (A l dX l ) or (B s dX s ) since

the implementation of the structures for both one-forms would give rise to
a useless relation involving a vanishing three-form. All the integral expres-

sions to be derived in this section allow the combination of this prescription

with (2.2) and (2.3). The consistency of (2.2) and (2.4) with (2.5) thus

stems from

[(B s X s )(A l dX l ) 2 (A l X l )(B
s dX s )] Ù

d z
z

Ù d X

5 [(A l X l )(B
s X s ) 2 (B s X s )(A l X l )]

d z
z

Ù
d z 8

z 8
Ù d X [ 0 (2.8)
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where z 8 is defined in the same way as z . By virtue of the nullity of X m , the

twistors E m and F m can be considered as two generators of the null cone of

a fixed point of RM, whence, if f (X t ) is a homogeneous meromorphic function
of degree 2 2, then upon calling upon (2.1), we are led to the formal statement

# g X

f (X t )
(C m dX m )

(C m X m )
Ù d X 5 2 p i # g j

(I r s E r F s ) f (E t 1 j F t )d j (2.9)

where g X 5 g z 3 g j , with g z and g j being oriented S 1-contours which suitably
surround the singularities lying in the z j -planes. For example, up to choices

of orientation, we have

1

(2 p i)2 # g X

(C m dX m ) Ù d X

(I r s M r X s )(C m X m )2 5
(I r s E r F s )

2(I a b M a E[ b )(C d F d ])
(2.10)

and (Hughston, 1979)

1

2 p i # g X

d X

(I r s U r X s )(I m n V m X n )
5

1

(I a b U a V b )
(2.11)

where M m , U m , and V m are auxiliary twistors, with the relation

(I r s E r U s )(I m n F m V n ) 2 (I r s E r V s )(I m n F m U n )

5 (I r s E r F s )(I m n U m V n ) (2.12)

having also been taken into account. In (2.11), g X is particularly an S 1 that

surrounds in the j plane either of the singularities

a 5 ( 2 1)
(I r s E r U s )

(I m n F m U n )
, b 5 ( 2 1)

(I r s E r V s )

(I m n F m V n )

Let now ^ denote symbolically a twistor function whose homogeneity

degrees are prescribed in such a way that any integrands bearing ^ will

remain invariant when all the variables involved undergo arbitrary scalings.

We thus consider the simple-pole branch

# G XW...Z

^
d(G a X a )

(G a X a )
Ù

d(H b X b )

(H b X b )
Ù d X Ù D W . . . Z

5 (2 p i)2 # g XW...Z

^ d X Ù D W . . . Z (2.13)

where G XW...Z 5 #G 3 #H 3 g XW...Z , with #K being an S 1 of either orientation

that surrounds the origin of the l K plane and l K denoting either G a X a or

H b X b . Obviously, g XW...Z 5 g X 3 G W...Z , with G W...Z playing a symbolic role
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at this stage. In case both G m and H m are constant twistors, the expression

(2.5) yields at once

# G XW...Z

^
(I a b G a H b )

(G a X a )(H b X b )
D XW . . . Z

5 (2 p i)2 # g XW...Z

^ d X Ù D W . . . Z (2.14)

If either D G or D H occurs in (2.13), or even if both the forms enter the

integrals, some manipulations using appropriately the relations (2.1)±(2.3),

(2.5), and (2.7b) together with a suitable selection of contours for the z h
integrations yield the structure (2.14) once again up to an ordering sign [see

(2.17) below].
A procedure similar to the one just completed produces a clear prescrip-

tion for lowering the orders of multiple-pole branches. We have, in effect,

# G XW...Z

^
d(G a X a )

(G a X a )m Ù
d(H b X b )

(H b X b )n Ù d X Ù D W . . . Z 5 0 (2.15)

with m $ 2 and n $ 1. It is evident that the case where dG m 5 0 5 dH m

is useless. If only G m varies, say, we obtain upon expanding the left-hand

side of (2.15)

# G XW...Z

^
[(X a dG a ) 1 (G a dX a )]

(G a X a )m(H b X b )n Ù (H b dX b ) Ù d X Ù D WG . . . Z

5 # G XW...Z

^
(I a b G a H b )

(G a X a )m(H b X b )n D XWG . . . Z

2 (2 p i)2 # g XW...Z

^
d X Ù D WG . . . Z

(G a X a )m 2 1(H b X b )n 2 1

1 # G XW...Z

^
(G m dX m ) Ù (d z / z ) Ù d X Ù D WG . . . Z

(G a X a )m(H b X b )n 2 1

2 # G XW...Z

^
(H m dX m ) Ù (d z / z ) Ù d X Ù D WG . . . Z

(G a X a )m 2 1(H b X b )n 5 0 (2.16)
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whence

# G XW...Z

^
(I a b G a H b )

(G a X a )m(H b X b )n D XWG . . . Z

5 (2 p i)2 # g XW...Z

^
d X Ù D WG . . . Z

(G a X a )m 2 1(H b X b )n 2 1 (2.17)

Letting both G m and H m vary yields the same result as (2.17), but now the
product of D -forms carries also D H.

The relations derived above tell us that we can reduce integrals of

projective three-forms to integrals of projective one-forms by performing

integrations along well-prescribed S 1-contours. Had we instead worked out

inhomogeneous structures, a similar reduction would have been naturally

brought about. Hence, the overall contours borne by any multidimensional
integrals can be fibered into S 1-factors. In practice, (2.14) is most naively

used when the functional dependence of ^ on X m involves only simple-pole

elementary states and (G m , H m ) is a pair of fixed auxiliary twistors. In such

situations, the singularities carrying G m and H m are evidently represented by

external lines. The application of (2.14) to cases where at least one of G m

and H m is to be integrated gives rise to a disconnection of the internal

branches of the diagrams being dealt with, which may induce the occurrence

of divergent results if the parametrization (2.6) is not taken to carry conjugate

variable twistors. Inserting this kind of twistor into (2.6) does indeed restore

the connectedness, but this procedure actually causes a loss of holomorphicity.

The recovery of the holomorphicity can be attained only if suitably balanced
dualization relations are brought into the pertinent integrands. What happens

is, in effect, that the factors which spoil the holomorphicity are canceled

when we implement adequate dualizations. In contrast to simple-pole patterns,

multiple poles borne by standard elementary states are associated with internal

lines, but higher order poles of configurations that carry functional branches

usually appear as external lines. In typical elementary-state cases when n $
2, the recovery of the conformal invariance will be ensured if we utilize

(2.17) upon performing integrations leading to d -forms. In these cases, the

order-lowering devices also enable us to avoid dealing with vanishing integrals

of the type * g z ( z 2 a) 2 N d z with N $ 2, the use of (2.17) for n 5 1 being

often made when the integrals under consideration carry constant H b -twistors.

Frequently, in treating integrals which bear simple and multiple poles together
with functional branches we may initially retain the higher order pole pieces

and then use the theorem of residues along with elementary derivative tech-

niques for completing the evaluations at issue. In each of the classical cases

of branches of logarithmic functions, for instance, this procedure entails
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eliminating at least one of those functions at the final stages of the relevant

calculations. Some further points concerning the structure of (2.14) and (2.17)

will be made in Sections 4 and 5.

3. GRAPHICAL DEVICES

One of the main facts upon which the construction of the usual graphical

computational devices for decomposable tensors rests is that any symmetry

operation can be looked upon as either an index or a kernel-letter permutation
rule. Here, the indices of any tensors are represented by vertical lines contained

in the same plane. The index lines lie above or beneath the kernel letters

according to whether the corresponding indices are upper or lower. Diagram

symbols may be used in place of letters, in which case the index lines are

taken to start at points of the symbols. The twistor conjugation amounts in

any case to a reflection of the configurations in some horizontal. Index
contractions are implemented by joining endpoints of index lines. Outer

products are represented by juxtaposing the structures that correspond to the

relevant factors. Skew-symmetrizations and symmetrizations are denoted,

respectively, by horizontal straight and staggered lines which cross the index

lines associated with the indices taken up by the operations, but such an
operation will henceforth be regarded as a kernel-letter rule. Suitable displace-

ments of branches leave the graphs invariant in the sense that the former and

latter configurations appear to represent the same tensors.

For twistors A b , . . . , D b and X a , . . . , V a , we thus have the representation

A b 5
)
A, . . . , D b 5

)
D

(3.1a)

and

X a 5
X
) , . . . , V a 5

V
) (3.1b)

The inner product of A b with X a , say, is depicted as

A m X m 5
X
)
A

(3.2)

Additionally, we have the representations

) ) X Y
2! A[ m B n ] 5 2! A B , 2! X [ m Y n ] 5 2! ) ) (3.3)
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and

) ) X YDD
2! A( m B n ) 5 2! A B , 2! X ( m Y n ) 5 2! ) ) (3.4)DD

It is obvious that we can also depict structures similar to (3.3) and (3.4),

which involve three and four twistors. As far as Section 4 is concerned, the

symmetric case will occur only in the evaluation of one of the diagrams.
Thus, we shall concentrate our attention upon skew-symmetric configurations,

but a symmetrized-block equality which plays an auxiliary role in the evalua-

tion referred to above will be constructed. We have the simple defining

expansion

X Y X Y X Y X Y

) ) ) ) ) ) ) )
2! A B 5 A B 2 B A 5 2! A B (3.5)

which provides us with the relations

X Y X Y X Y X Y

) ) ) ) ) ) ) )
) A ) B 5 1±2 A B C D (3.6a)

) )
C D

and

X Y X Y X Y X Y

) ) ) ) ) ) ) )
) A ) B 5 ) C ) D (3.6b)

) ) ) )
C D A B

along with

X Y U

) ) )
X Y U ) A )
) ) ) ) )
A B C 5 C B (3.6c)

and

U Y

) )
X Y U ) X )
) ) ) ) ) )
A B C 5 A B C (3.6d)
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One of the contracted three-twistor expansions turns out to be expressed as

X Y U X Y U Y X U U X Y

) ) ) ) ) ) ) ) ) ) ) )
3 A B C 5 A B C 2 A B C 1 A B C (3.7)

and thus suggests writing the useful statements

X Y U X Y U U X Y

) ) ) ) ) ) ) ) )
3 A B C 5 2 A B C 1 A B C (3.8)

X Y U X Y U X Y U

) ) ) ) ) ) ) ) )
3 A B C 5 2 A B C 1 C A B (3.9)

and

X Y U X Y U

) ) ) ) ) )
3! A B C 5 3! A B C (3.10)

We also have

X U Y U V U

) ) ) ) ) )
X Y U V ) Y ) V ) V ) X ) X ) Y

) ) ) ) ) ) ) ) ) ) ) ) ) ) ) )
3 A B C D 5 A B C D 1 A B C D 1 A B C D

(3.11)

along with

U V

) )
X Y U V X Y U V ) X Y ) X Y U V

) ) ) ) ) ) ) ) ) ) ) ) ) ) ) )
2 A B C D 5 A B C D 1 A B C D 5 2 A B C D

(3.12)

and

X Y U V X Y U V X Y U V X Y U V X Y U V

) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) )
4 A B C D 5 A B C D 2 B A C D 1 C A B D 2 D A B C

(3.13)
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The alternating twistors are represented by

e a b g d 5 ) ) ) ) (3.14)

and

e m n l s 5 ) ) ) ) (3.15)

In the canonical bases, (3.14) and (3.15) can be particularly employed to

express totally skew-symmetric four-twistor blocks according to the schemes

X Y U V X Y U V

) ) ) ) ) ) ) ) ) ) ) )
4! 5 (3.16a)

and

) ) ) ) ) ) ) )
4! A B C D 5 ) ) ) )

A B C D (3.16b)

We stress that any eventual contractions with (3.16) must be made in an

ordered manner. For lower-index twistors, for instance, straightforward com-
putations thus yields

(3.17)

(3.18)

and

(3.19)
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together with

(3.20)

with the bracketed lines meaning index contractions.

It is convenient to introduce a representation for the infinity twistors.

We have the graphs

) ) ) )
I m n 5 , I r s 5 (3.21)

which are subject to

) ) )
5 0 (3.22)

) ) ) ) ) )
5 1±2 (3.23a)

and

) ) ) ) ) )
5 1±2 (3.23b)

For the property (2.12), we accordingly have the configuration

U V

) )
E ) F ) E F U V

) ) ) ) ) ) ) )
2! 5 (3.23c)

The standard dualization relations are thus depicted as

) ) A B) )
A B ) ) ) )A B 5 1±2 ±±±±± (3.24a)
A B

) )
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and

X Y
X Y ) ) ) ) ) )
) ) 5 1±2 ±±±±± X Y (3.24b)

) )
X Y

Usually, the RM-lines associated with the elementary twistors which enter

into each of the above dualizations are required to meet such that (3.5)

normally carries information on the distance between the vertices of two null

cones in RM. We are then led to the reality statement

) ) ) ) A B C D A B C D ) ) ) )
A B C D ) ) ) ) 5 ) ) ) ) A B C D (3.24c)

A set of especially useful structures can be constructed by utilizing the

relations (3.17)±(3.19). We have, for instance,

X Y U X Y U V G H

) ) ) V G H ) ) ) ) ) ) ) ) ) )
3! A B ) ) ) ) 5 ( 2 1) A B

(3.25)

and

) ) ) )
X Y U ) ) A B

) ) ) V G H ) ) X Y U V G H
4 A B ) ) ) ) 5 ) ) ) ) ) ) ) ) (3.26)

Supposing here for once that the piece
X
)
C

of (3.9) vanishes, we can write

) ) ) ) ) ) ) )
) ) A B ) ) A B

) ) X Y U V G H ) ) X Y U V G H

) ) ) ) ) ) ) ) ) ) ) ) ) ) ) )
5 2±3 (3.27)

where (3.10) has been employed. In addition, we have the skew-symmetry
property

X V

) )
) Y U G H Y U ) X Y U G H Y U V

) ) ) ) ) ) ) ) ) ) ) ) ) ) ) )5 (3.28)
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Carrying out an expansion of the type (3.12) yields

X Y U G H Y U V X Y U G H Y U V

) ) ) ) ) ) ) ) ) ) ) ) ) ) ) )
2 5 (3.29)

We can disconnect the left-hand side of (3.29) by accounting for (3.16) and

(3.19). We thus have

X Y U G H Y U V Y U G H X Y U V

) ) ) ) ) ) ) ) ) ) ) ) ) ) ) )5 ( 2 1)

4
(3.30)

Making particular use of (3.17), we obtain

) ) ) ) ) ) ) )
G H ) A B C D E F )

Y U ) ) Y U ) Y U G H Y U )
) ) ) ) ) ) ) ) ) ) ) ) ) )

3!3! A B C D E F 5 (3.31)

It should be noticed that (3.29) and (3.30) can be recovered from (3.31)

by defining

X ) ) )))
5 A B C (3.32a)

and

V ) ) ) ))
5 D E F (3.32b)

For instance,

) ) ) ) ) ) ) )
G H ) A B C D E F )

Y U ) ) Y U ) Y U G H Y U )
) ) ) ) ) ) ) ) ) ) ) ) ) )

18 A B C D E F 5 (3.33)

It follows that

Y U G H G H

) ) ) ) Y U Y U ) ) Y U

) ) ) ) ) ) ) ) ) ) ) )
2 A B C D E F 5 A B C D E F (3.34)
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and, consequently, we can write

G H
Y U ) ) Y U

) ) ) ) ) ) Y U G H Y U

) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ))
A B C D E F 5 A B C D F E

1

72

(3.35)

Identifying A [ E and B [ F splits out the connected e -piece that occurs on the

right-hand side of (3.35). We have, in effect,

G H

Y U ) ) Y U Y U

) ) ) ) ) ) ) ) ) ) Y U G H ) )
3!3! A B C D A B 5 A B C D ) ) ) ) A B

(3.36)

If we combine (3.35) and (3.36), recalling (3.16), we arrive at the simplified

relation

Y U Y U

) ) ) ) ) ) ) ) ) ) ) ) ) ) ) )
A B C D A B 5 ( 2 2) A B C D A B

(3.37)

It is also useful to consider the PoincareÂ-invariant structure

) ) ) ) ) ) ) ) ) ) ) ) ) )
3! C D E A B C 5 ( 2 1) C D E ) ) ) ) A B C

(3.38)

whence, expanding its left-hand side and using (3.23a) gives

) ) ) ) ) ) ) ) ) ) ) ) ) )
A B C C D E 5 2! C D E A B C (3.39)

Let us now symmetrize the structure (3.34) over C and D. Invoking

(3.9) and interchanging kernel letters, we readily obtain

G H Y U G H Y U G H

) ) ) ) ) ) ) ) ) )
A B ) ) G H 5 2±3 A B ) E F ) (3.40)

) ) ) ) ) )DD DDDDDD

C D E F C D
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which also holds when C [ D. It is of interest to write down the structure

which arises from the right-hand side of (3.40) when we drop the staggered

line and replace D a with a kernel of the same type as the connected one that
involves skew-symmetrizations over GHYU and EF. We thus have the

property

G H

) )
G H Y U ) G H Y U ) G H Y U G G H Y U H

) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) )
A B R E F A B S E F 5 A B ) E F A B ) E F (3.41)

) )
R S

which can be rapidly established by displacing branches adequately. Carrying

out the expansions in E and F entails the simplification

G H

) )
G H G H Y U G H Y U G H Y U ) G H Y U )
) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) )
E F A B ) E A B ) F 5 2 A B R E F A B S E F

) )
R S

(3.42)

since the latter RS-connected piece is also skew in EF. Hence, incorporating

(3.16) into the left-hand side of (3.42) implies that

G H Y U G H Y U
G H Y U) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) )

5
( 2 1)

4!4! 1 2
2

A B ) E A B ) F E A B R S A B F

) )
R S (3.43)

Moreover, taking (R b , Y a ) and (S b , U a ) as pairs of conjugate twistors and

making use of (3.37) yields

G H Y U G H Y U ) ) Y U G H Y U G H Y U

) ) ) ) ) ) ) )
R S

) ) ) ) ) ) ) ) ) )
5

1

4!
A B ) E A B ) F ±±±± A B A B E F

) ) Y U

R S ) )
(3.44)
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Under these circumstances, we also obtain

G H
G H ) )

G H Y U ) ) ) ) G H Y U ) Y U )
) ) ) ) ) ) R S ) ) ) ) ) ) ) )

5
1

4
2 A B ) E F ) ±±±± ) A B ) (3.45)

) ) Y U ) )
R S ) ) F E

with

G H G Y U H G Y U H

) ) ) ) ) ) ) ) ) )
) Y U ) G H Y U ) A B ) ) E F )
) ) ) ) ) ) ) ) ) ) ) )

2 ) A B ) 5 2 A B F E 1 F E 1 A B (3.46)

) )
F E

and

G Y U H G Y U H

) ) ) ) ) ) ) )
) A B ) ) E F ) G H Y U Y U G H

) ) ) ) ) ) ) ) ) ) ) )
5

1

3 1 2F E 1 A B A B E F 2 A B E F (3.47)

4. EXPLICIT EVALUATION OF DIAGRAMS

A remarkable feature of Penrose’ s diagrams is related to the fact that all

the variable twistors involved in the representative integrals are taken to be
independent of each other. Thus, the integration of one spotted vertex can be

carried out as if the twistors occurring in the other vertices were fixed. When

combined together with the scaling-invariance property, this feature allows us

to neatly implement the techniques of the foregoing sections in connection with

our immediate purposes here. Upon carrying out calculations that reduce to d -
integrals connected diagrams possessing only simple poles, we will pick up

singularity pieces associated with inner products involving both constant and

variable GH-twistors. Indeed, the cases in which the explicit denominators of

(2.14) represent external and internal lines will both take place. The relation

(2.17) for n 5 1 will be applied strictly to integrals that do not carry D H. It will
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be seen that the recovery of some of the results mentioned earlier generally

requires identifications which involve twistors of the same type and conjugate

twistors. As regards simple-pole diagrams, dualization identifications appear
to bear a ª strongerº character in that standard structures can be brought back

in a more effective way. Whenever the dualization prescription is applied to the

auxiliary twistors of (2.6), the inner products G a X a and H b X b of (2.14) turn

out to vanish identically as the integrals of (2.13) which are taken along #K

automatically select X m at the origins of the l K planes. In these situations, the

location of vertices of null cones is clearly dependent upon the choice of G b

and H b , although the blocks that afford the RM values of the diagrams remain

essentially unaffected when interchanges of kernel letters for constant twistors

of the same valence are allowed for. In the first instance, making such inter-

changes merely entails a change of dummy integration variables. The above

properties are also borne by the ordinary configurations that carry logarithms,

but dualizations seriously fail to hold for the elementary states that carry one
double pole. Some higher order elementary states admit identifications which

involve mixing up and interchanging kernel letters of twistors that occur in

different branches.

In what follows, the integration procedures will be particularly illus-

trated. As the formulas (2.14), (2.17), (3.24a), and (3.24b) will be used so
many times, we shall no longer refer to them explicitly. We will adopt the

additional convention according to which each projective spotted vertex

contributes a (2 p i) 2 3 factor to an integral. The (overall) signs corresponding

to choices of contour orientations will be ignored.

Let us begin with the simple diagram exhibited in Fig. 1. The associated

integral is

I1 5
1

(2 p i )6 # G
WZ

D WZ

WWWWDEF
) ) ) ) ) ) )
A B C Z Z ZZ

(4.1)

Performing integrations and parametrizing

Fig. 1. A two-spotted-ve rtex tree diagram. The relevant singularities are all simple poles.
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W a 5 L a 1 m M a (4.2)

yields, say,

I1 5
1

(2 p i )2 # g m 3 g
Z

L M
) ) d m Ù d Z

) )
A B

E F
) )

M M D
) ) )
C Z Z

( m 2 a)( m 2 b)

(4.3)

where

a 5 ( 2 1)
L
)
C Y M

)
C

(4.4a)

and

b 5 ( 2 1)
L
)
Z Y M

)
Z

(4.4b)

Now, carrying out the m -integral and parametrizing

Z b 5 G b 1 n H b (4.5)

we obtain the expression

I1 5

) ) L M
G H ) )

2!
) )
A B

E F
) )

L M D
) ) )
C H H

1

2 p i # g n

d n
( n 2 A)( n 2 B)

(4.6)

with

A 5 ( 2 1)
D
)
G Y D

)
H

(4.7a)

and

B 5 ( 2 1)
L M
) )
C G Y L M

) )
C H

(4.7b)
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Fig. 2. A tree carrying three spotted vertices and simple poles.

It follows that

) ) L M
G H ) )

I1 5 Ð Ð Ð Ð Ð Ð Ð Ð Ð ± (4.8)
L M D

4
) ) E F ) ) )A B ) )

C G H

whence, implementing the identifications

L b [ A b , M b [ B b , G a [ E a , H a [ F a (4.9)

we recover the result

I1 5
1

3!
F E D
) ) )
A B C

(4.10)

We notice that (4.6) would also yield (4.10) if the pattern (3.8) along with

the condition C m D m 5 0 were used in conjunction with the kernel-letter

identifications L [ E, M [ F, G [ A, and H [ B.

The diagram shown in Fig. 2 is expressed by the integral

I2 5
1

(2 p i )9 # G
WXY

D WXY

W W W C D E F G H W
) ) ) ) ) ) ) ) ) )
A B X X X X Y Y Y Y

(4.11)

Adopting the parametrization prescription

W a 5 L a 1 m M a , X b 5 R b 1 n S b , Y b 5 P b 1 t Q b (4.12)
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we can write

L M ) ) ) )
) ) R S P Q 1 d t# g t

I2 5 Ð Ð Ð Ð Ð Ð Ð Ð Ð Ð Ð Ð Ð ± ±±± Ð Ð Ð Ð Ð Ð ± (4.13)

) ) C D F G H E L M 2 p i ( t 2 A)( t 2 B)

4 A B ) ) ) ) ) ) ) )
Q R S Q

where

A 5 ( 2 1)
H
)
P Y H

)
Q

(4.14a)

and

E L M E L M
B 5 ( 2 1) ) ) ) ) ) )Y (4.14b)

R S P R S Q

Consequently,

L M ) ) ) )
) ) R S P Q

I2 5 Ð Ð Ð Ð Ð Ð Ð Ð Ð Ð Ð Ð Ð Ð (4.15)

8
) ) C D F G H E L M
A B ) ) ) ) ) ) ) )

) R S )
) )
P Q

Hence, identifying

L b [ A b , M b [ B b , R a [ C a ,

S a [ D a , P a [ F a , Q a [ G a (4.16)

and invoking (3.25), we obtain

1 ( 2 1)
I2 5 5

(4.17)

C D E F G H C D E F G H
3! ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) )

A B A B

Alternatively, (4.17) can be derived from (4.13) by combining (3.9) with the

trivial identifications
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L [ C, M [ D, R [ A, S [ B, P b [ F b , Q b [ G b

and taking E a as a linear combination of F a , G a and H a .

When calculating I1 and I2, one can make use of the Qadir kernels

KW 5
1

(2 p i )3 # G W

D W

W W W W
) ) ) )
T V K J

5
1

) ) ) )
T V K J

(4.18)

and

KY 5
1

(2 p i )3 # G Y

D Y

I N U V
) ) ) )
Y Y Y Y

5
1

I N U V
) ) ) )

(4.19)

which effectively constitute a holomorphic version of RM-separations. We

point out that, according to our techniques, the evaluation leading to any

such kernel involves the combination of e -dualizations with the calculations

of very simple integrals. For example,

KZ 5
1

2 p i # g
Z

d Z

X Y
) )

U V
) )
Z Z

5

) )
X Y

2
X Y
) )

U V

) )
X Y

(4.20)

For the diagram drawn in Fig. 3, we have the integral

Fig. 3. A diagram with an internal box. All the singularity lines bear the number zero.



1880 Cardoso

I3 5
1

(2 p i)12 # G
WXYZ

D WXYZ

W W W W C D Y Y Y Y G H
) ) ) ) ) ) ) ) ) ) ) )
A B X Z X X X E F Z Z Z

(4.21)

Equations (4.18) and (4.19) can be utilized to carry out the WYZ integrals,

say. This procedure leads us to

1 D X
I3 5 (4.22)# G

X
(2 p i )3 G H C D

) ) ) ) ) ) ) ) ) ) ) )
A B X X F E X X

Consequently, performing the integrals that involve the elementary inner

products and parametrizing

X b 5 P b 1 n Q b (4.23)

we obtain

I3 5

) )
P Q

C D
) )

1

2 p i # g n

d n
A n 2 1 B n 1 C

(4.24)

where

G H

) ) ) ) ) ) ) ) ) )
A 5 A B Q Q F E (4.25a)

G H

) ) ) ) ) ) ) ) ) )
B 5 2! A B ) ) F E (4.25b)

) )DDDDDDD

P Q

and

G H

) ) ) ) ) ) ) ) ) )
C 5 A B P P F E (4.25c)

The contour g n is supposedly taken to surround either of the singularities

given by the zeros of the denominator of (4.24). We thus have
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I3 5

) )
P Q

C D
) )

(B2 2 4AC ) 2 1/2 (4.26)

At this point, it is useful to reexpress the coefficients (4.25) by making use

of (3.34), (3.35), and (3.40). Hence, defining

G H C D

) ) ) ) ) )
` 5 A B Q F E (4.27)

and

G H C D

) ) ) ) ) )
d 5 A B P F E (4.28)

we write

G H C D G H G H

) ) ) ) ) ) ) )
A B Q Q E F Q `

A 5 4! 6 5 4! 4 (4.29a)
G H C D G H C D

) ) ) ) ) ) ) )

along with

B 5 4! 4
1 G H

) )
P ` 1

G H
) )

Q d2
G H C D
) ) ) )

(4.29b)

and

G H C D G H G H

) ) ) ) ) ) ) )
A B P P E F P d

C 5 4! 6 5 4! 4 (4.29c)
G H C D G H C D

) ) ) ) ) ) ) )
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After some manipulations implementing (3.6a) in the form

G H G H

) ) ) )
) ` ) d G H G H

) ) ) ) ) )
2 P Q 5 P Q ` d (4.30)

we thus obtain

G H G H G H G H

(4!)216 ) ) ) ) ) ) ) )
(B2 2 4AC ) 5 Q d 2 P ` P Q d `2

2

2 4F 1 GG H C D

) ) ) )1 2
2

(4.31)

If the identifications P b [ C b [ R b and Q b [ D b [ S b are combined together

with (4.23), the squared difference of (4.31) will be of the type of (3.45),

whereas the skew kernel carrying (4.27) and (4.28) will turn out to be of the

samed type as (3.41). Hence, putting into effect the formulas (3.42) ±(3.44)

together with (3.46) and (3.47) gives

I3 5 ( a 2 1 b 2 1 g 2 2 2 a b 2 2 a g 2 2 b g ) 2 1/2 (4.32)

where

C D G H

) ) ) )
a 5 2! 2! A B E F (4.33a)

G H C D

) ) ) )
b 5 2! 2! A B E F (4.33b)

and

G H C D

) ) ) )
g 5 4! A B E F (4.33c)

We observe that (4.32) is invariant under the interchange a % b .

The integral

I4 5
1

(2 p i )15 # G
WXYUZ

D WXYUZ

W W W X X X Y Y Y U U U W X Y U
) ) ) ) ) ) ) ) ) ) ) ) ) ) ) )
A B C D E F G H K M N L Z Z Z Z

(4.34)



General Techniques for Evaluating Twistor Diagrams 1883

Fig. 4. A tree having five spotted vertices. The internal lines represent simple poles.

corresponds to the diagram depicted in Fig. 4. Rather than using (4.18) and

(4.19) explicitly, we first perform integrations that lead to d WXYU and then

take up the prescription

W a 5 R a 1 m S a (4.35a)

X a 5 T a 1 n V a (4.35b)

Y a 5 P a 1 t Q a (4.35c)

U a 5 I a 1 s J a (4.35d)

This alternative procedure yields the integral

I4 5

R S T V P Q I J
) ) ) ) ) ) ) )

24 ) ) ) ) ) ) ) )
A B D E G H M N

1

(2 p i )3 # G
Z

D Z

R S T V P Q I J
) ) ) ) ) ) ) )
C Z F Z K Z L Z

(4.36)
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which leads us to the result

R S T V P Q I J
) ) ) ) ) ) ) ) 1

I4 5 (4.37)

) ) ) ) ) ) ) ) R S T V P Q I J

24 A B D E G H M N ) ) ) ) ) ) ) )
C ) F ) K ) L )

) ) ) )
Therefore, adopting the dualization scheme

R a 5 A a , S a 5 B a , T a 5 D a , V a 5 E a (4.38)

P a 5 G a , Q a 5 H a , I a 5 M a , J a 5 N a

we obtain

1
I4 5 (4.39)

) ) ) ) ) ) ) ) ) ) ) ) ) ) ) )
) A B C ) D E F ) G H K ) M N L

) ) ) )
A diagram carrying a double pole is depicted in Fig. 5. The pertinent

integral is

I5 5
1

(2 p i )6 # G
WX

D WX

W W
) )
A B 1

W
)
X 2

2 C D
) )
X X

(4.40)

Lowering the pole order via W-integrations, say, and performing the simple-

pole X-integrals, we get the useful expression

I5 5
1

(2 p i )2 # g
WX

d WX

) ) C D
A X ) )

W W
) )
B X

(4.41)

which implies that

Fig. 5. A diagram carrying one double pole. The structure possesses an elementary-state

character and a specific invariance property.
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1
L M ) )
) ) K J

I5 5 (4.42)
4 C D L M ) )

) ) ) ) ) )
) B A )
) )
K J

where L a , M a and K b , J b have been introduced to parametrize W a and X b ,

respectively. Implementing the identifications

L [ C, M [ D, K [ A, J [ B (4.43)

and employing (3.5), we end up with the result

I5 5
1

2!
C D
) )
A B

(4.44)

which is invariant under the simultaneous replacements

A ` B, C ` D (4.45)

Owing to the invariance of the denominator of the integrand of (4.40) under

the combination of reflections and kernel-letter relabelings, we would have

obtained the same result if the WX-integrations giving rise to (4.41) had been

the other way about. Clearly, (4.42) does not admit the implementation
of dualizations.

The representative integral for the diagram drawn in Fig. 6 is written as

I6 5
1

(2 p i )9 # G
WXY

D WXY

W W
) )
A B 1

W
)
X 2

2

1
Y
)
X 2

2 Y Y
) )
C D

(4.46)

In contradistinction to (4.40), this integral provides a nonvanishing outcome
regardless of the way in which we perform integrations yielding d -forms.

We have the connected expression

Fig. 6. One of the dual elementary-state diagrams with two double poles.
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I6 5
1

(2 p i )3 # g
WXY

d WXY

W Y ) ) ) )
) ) A B C D

W Y
) )
X X

(4.47)

Thus, parametrizing

W a 5 U a 1 j V a , X b 5 R b 1 h S b (4.48)

and carrying out the WX-integrals gives

U V ) )
) ) R S 1 d Y

I6 5 (4.49)# g
Y

4 ) ) ) ) 2 p i Y U V Y
A B C D ) ) ) )

R S

The denominator of the integrand of (4.49) is evidently proportional to the

left-hand side of (3.9). Its structure can be made even more transparent if

we use the dualization devices for R b and S b along with the conjugate of

(3.39). We have, in effect,

U V R S

) ) ) ) 1 d Y
I6 5 (4.50)# g

Y
) ) ) ) 2 p i U V Y Y R S
A B C D ) ) ) ) ) ) ) )

To recover the result of (4.46) given earlier (Qadir, 1978), it suffices to

implement the parametrization

Y a 5 L a 1 t M a (4.51)

together with the prescription

L a [ A a , M a [ B a , U a [ C a , (4.52)

V a [ D a , R b [ C b S b [ A b

likewise taking account of (3.24c). We are then left with

I6 5
1

) ) ) )
A B C D

(4.53)

In the sequel, we consider a couple of easy integrals carrying logarithms.

The first is written as
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I7 5
1

(2 p i )3 # G
W

log 1
W
)
P Y W

)
Q 2 D W

W
)
A 1

W
)
B 2

2 W
)
C

(4.54)

its diagrammatic form being given in Fig. 7. Performing the integrals that

involve the simple poles, and parametrizing

W a 5 L a 1 m M a (4.55)

yields

I7 5

L M
) )

) )
A C 1

M
)
B 2

2

1

2 p i

-
- a # g m

log 1
W
)
P

( m ) Y W
)
Q

( m )

2 d m

( m 2 a)
(4.56)

with a being taken to vary independently of m , and the derivative being
effectively evaluated at

a 5 ( 2 1)
L
)
B Y M

)
B

(4.57)

Hence,

Fig. 7. A diagram carrying a negative number with a logarithmic branch.
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I7 5

L M
) )

L M
) )
P Q

2 ) )
A C

L M
) )
P B

L M
) )
Q B

(4.58)

Upon making the identifications

L a [ A a , M a [ C a (4.59)

we obtain

I7 5

) ) ) )
P Q A C

) ) ) )
P A B C

) ) ) )
Q A B C

(4.60)

We next consider the integral

I8 5
1

(2 p i )6 # G
WX

log 1
W
)
X @

W Q
) )
P X 2 D WX

1
W
)
A 2

2 W W
) )
B C 1

D
)
X 2

2 E F
) )
X X

(4.61)

which corresponds to Fig. 8. Notice that the logarithmic functional depen-

dence is invariant under rescalings of the variable twistors. Thus, carrying
out the simple-pole integrations and parametrizing

Fig. 8. A two-spotted-ve rtex diagram with a negative number and a logarithmic branch.
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W a 5 L a 1 m M a , X b 5 R b 1 n S b (4.62)

gives

I8 5 k
- 2

- a - b 3 1

(2 p i )2 # g m 3 g n

log 1
W( m )
)

X( n ) @
W( m )

)
P

Q
)

X( n ) 2 d m Ù d n

( m 2 a)( n 2 b) 4 (4.63)

where

k 5

L M ) )
) ) R S

) ) E F
B C ) ) 1

M
)
A 2

2

1
D
)
S 2

2
(4.64)

In (4.63), the derivatives are evaluated at

a 5 ( 2 1)
L
)
A @

M
)
A

(4.65a)

and

b 5 ( 2 1)
D
)
R @

D
)
S

(4.65b)

We thus obtain the value

L M

) )
R S

I8 5 (4.66)
L M D

) ) )8 1 2
2

A R S

whose denominator carries a connected kernel which is formally the same

as the one borne by (4.8). Identifying L b , M b and R a , S a with B b , C b and

E a , F a , respectively, yields the result
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I8 5

2!
E F
) )
B C

1 3!
F E D
) ) )
A B C 2

2
(4.67)

which is independent of P and Q. Of course, the combination of the identifications

L [ E, M [ F, R [ B, and S [ C with the condition A m D m 5 0 also leads to (4.67).

5. CONCLUSIONS AND OUTLOOK

An interesting property of the integral (4.46) is concerned with the

applicability of the Qadir-kernel procedure to the structure that arises when

we just lower the pole orders. It is clear that the expression (4.50) amounts to

U V R S L M

) ) ) ) ) )
) ) ) ) L M
A B C D ) )

U V ) ) R S
2! ) ) ) ) ) ) ) )

If we had in effect used (4.18) for integrating the WY-vertices of the lower

order configuration, we would have obtained the equivalent result

) )
R S

I6 5
2! ) ) ) ) ) ) ) )

C D ) ) A B

) )
R S

with the entire class of admissible identifications being given by

(LM ) (RS ) (UV )

(AB, CD) ¬ (CA) ® (CD, AB)

(AB, CD) ¬ (DA) ® (CD, AB)

(AB, CD) ¬ (CB) ® (CD, AB)

(AB, CD) ¬ (DB) ® (CD, AB)

which also involves the interchange (LM ) % (UV ). Actually, this regulariza-

tion property is borne by the (dual) double-pole elementary-state diagrams
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which carry an arbitrary odd number N of spotted vertices. The value of one

of the generalized patterns is expressed as the coupling of (N 2 1)/2 blocks

of the same type as those for I6, the diagrams being thus related to one
another through a white±black interchange rule. For example, for the diagram

with the parametrization prescription

X b ® (R b , S b ), Z b ® (K b , J b )

we have the expression

) ) ) )
R S K J 1

5
4 ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) )

C D ) ) ) ) A B A B C D

) ) ) )
R S K J

together with the kernel-letter scheme

(RS) (KJ )

(CA) ® (AD, BC, CD)

(DA) ® (AC, BD, CD)

(CB) ® (AC, BD, CD)

(DB) ® (AD, BC, CD)

the relations (3.38) and (3.39) certainly enabling us to interchange the roles

of (RS ) and (KJ ).

On the other hand, the integral (4.40) does not admit the Qadir-kernel

regularization as well insofar as the number of spotted vertices of the associ-
ated diagram is not large enough to ensure the achievement of a finite result.

However, the invariance of I5 under reflections and relabelings is carried

over to the configurations that bear an even number N $ 4. It turns out that

the extended patterns are all regularizable, with either of the integrals for

N 5 4 admitting a consistent set of identifications. As an example, for
the diagram
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we have the value

) ) ) ) ) )
R S K J M N

) ) ) ) ) ) ) ) ) ) ) C ) D
23

A B ) ) ) ) ) ) ) )
R S K J ) ) M N

where

X b ® (R b , S b ), Z b ® (K b , J b ), V b ® (M b , N b )

For N 5 4, we can thus write

) ) ) )
R S K J 1

5
C D) ) ) ) ) ) ) )

4 ) ) ) ) ) ) ) C ) D 2! ) )
A B ) ) ) ) ) ) A B

R S K J

with the identifications

(R b , S b ) [ (C b , D b )

(K b , J b ) [ (A b , B b )

Obviously, the number of elementary blocks now equals (N 2 2)/2, the

number of double lines being (N 2 1) in the case of either parity.
At first sight, one might think that sticking together simple and double

poles would ultimately constitute a generally allowable procedure for low-

ering orders. In fact, such an integration procedure provides connected struc-

tures and still retains the regularizability when N . 2, but its implementation

in the odd case makes one unable to recover the conformal invariance without

taking up vanishing infinity-twistor inner products. For any even value of
N, the order-lowering device that possesses n 5 1 nevertheless shows up as

a natural tool which has to be applied to only one of the double-pole branches

of each of the pertinent diagrams. When N 5 2 and m 5 3, we may then

apply that device twice to calculate either of the integrals for the internal-

triple-line elementary states. We thus have

1

(2 p i )6 # G
WZ

D WZ

(A r W r )(Z
m W m )3(Z s B s )

5
1

(A m B m )

which contrasts with (4.40) particularly for admitting dualizations. It should

be mentioned that the techniques developed here also provide tools for calcu-
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lating twistor integrals other than the ones considered up to the present time.

Among these nonordinary integrals is

( 5
1

(2 p i )6 # G
WZ

F(W a Z b ) D WZ

(A r W r )(Z
m W m )m(Z s B s )

from which one can derive in a somewhat elegant way the well-known
statement

1

(2 p i )6 # G
WZ

D WZ

(W m Z m )4 5 1

An important qualitative result we have obtained before is that the

conformal symmetry borne by the classical twistor diagrams turns out to be

reduced to the PoincareÂsymmetry when the evaluation procedures of Section

2 are carried through. Roughly speaking, what seems to be the crucial point
as regards the above situation is that wedge products involving d -forms are

intimately tied in with the inner structure of the diagrams. It is this feature

of the configurations which produces the symmetry reduction. Furthermore,

it has been observed that the incorporation of suitable twistors into our

parametrization schemes and the exclusion of spurious integration processes
bring about a recovery of the conformal symmetry at least in the cases we

have taken into consideration explicitly. Because of the nullity of the struc-

tures, meeting conditions have to be incorporated into the picture regardless

of whether the identifications that yield standard patterns are prescribed in

terms of conjugate twistors. In respect to this fact, it must be pointed out

that integrations at D -form levels of internal simple-pole branches really
provide acceptable results inasmuch as the pieces which destroy the holomor-

phicity of the corresponding integrands ª evaporateº when dualizations like

those of Section 3 are introduced into expressions of the form (4.20). We

should emphasize, in addition, that the occurrence of divergent outcomes

appears to be related to a breaking of Qadir kernels which essentially charac-

terize connected simple-pole patterns. Thus the implementation of results
coming from disconnecting internal simple lines seems to be forbidden. It

may be hoped that such viewpoints will prove helpful to systematize the

integration procedures once and for all.

It is worth remarking that our work can likewise be used to deduce a

set of rules for directly building up twistor amplitudes from Feynman graphs

without loops. On allowing for this latter situation, one may utilize the
traditional procedure which includes starting with solutions of the relevant

field equations and inserting them into the conventional expressions for the

entries of the scattering matrix. The amplitudes appear as PoincareÂ-invariant

wedge-produc t couplings adequately carrying the integrands of the universal
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contour integrals for interacting fields together with appropriate infinity-

twistor factors and scaling invariant one-forms of the type d F / F , with F
standing for the ordinary scalar product between variable twistors. The
presence of such one-forms not only guarantees the strongly required indepen-

dence between the twistors that partake of the main steps of the constructions,

but also gives rise to a naive prescription for selecting spacetime vertices

and makes feasible the appearance of basic diagrammatic pieces. Even when

the scattering processes are taken to involve massive fields, it will be possible

to sort out a procedure for fixing up kernel letters for auxiliary twistors
and ascribe a physical meaning to meeting conditions. We expect that an

investigation along these lines will supply a natural correspondence between

spacetime and twistor configurations as well as a manifestly finite version

of cross sections. Some of the philosophical aspects of twistor theory would

be eventually strengthened.
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